

VIDYA BHAWAN, BALIKA VIDYAPITH

Shakti Utthan Ashram, Lakhisarai-811311(Bihar)

(Affiliated to CBSE up to +2 Level)

CLASS: X

SUB.: MATHS (NCERT BASED)

DATE: 15-07-2020

Chapter 4:- Quadratic Equations

Ex 4.4

Question 1. Find the nature of the roots of the following quadratic equations. If the real roots exist, find them:

(i)
$$2x^2 - 3x + 5 = 0$$

(ii) $3x^2 - 4\sqrt{3}x + 4 = 0$

Solution: -

(i) Given: $2x^2 - 3x + 5 = 0$

Here, a = 2, b = -3 and c = 5.

.. Discriminant, $D = b^2 - 4ac$

$$= (-3)^2 - 4 \times 2 \times 5$$

$$= 9 - 40 = -31 < 0$$

Hence, the roots are imaginary.

(ii) Given: $3x^2 - 4\sqrt{3}x + 4 = 0$

Here, a = 3, $b = -4\sqrt{3}$ and c = 4.

∴ Discriminant, $D = b^2 - 4ac$

$$= \left(-4\sqrt{3}\right)^2 - 4 \times 3 \times 4$$

$$=48-48=0$$

Hence, the roots are real and equal.

Now using the formula,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \text{ we get:}$$

$$x = \frac{-(-4\sqrt{3}) \pm \sqrt{(-4\sqrt{3})^2 - 4 \times 3 \times 4}}{2 \times 3}$$

$$=\frac{4\sqrt{3}\pm\sqrt{48-48}}{6}=\frac{4\sqrt{3}}{6}=\frac{2}{\sqrt{3}}$$

Hence. The equal roots are $\frac{2}{\sqrt{3}}$ & $\frac{2}{\sqrt{3}}$ Answer

Do Your Self

(iii) $2x^2-6x+3=0$

Question 2.Find the values of k for each of the following quadratic equations, so that they have two equal roots.

(i) $2x^2 + kx + 3 = 0$

Solution:

(i)
$$2x^2 + kx + 3 = 0$$

This is of the form $ax^2 + bx + c = 0$,

where.

$$a = 2$$
, $b = k$ and $c = 3$

Discriminant,

$$D = b^{2} - 4ac$$

= $k^{2} - 4 \times 2 \times 3 = k^{2} - 24$

For equal roots,

$$D = 0$$

$$\Rightarrow \qquad k^2 - 24 = 0$$

$$\Rightarrow \qquad \qquad k^2 = 24 \quad \text{or} \quad k = \pm \sqrt{24}$$

$$\Rightarrow \qquad \qquad k = \pm \sqrt{4 \times 6} = \pm 2\sqrt{6}$$

Answer

(ii) kx(x-2) + 6 = 0

Solution:

(ii)
$$kx(x-2) + 6 = 0$$

$$\Rightarrow kx^2 - 2kx + 6 = 0$$

This is of the form $ax^2 + bx + c = 0$,

where a = k, b = -2k and c = 6

Discriminant,
$$D = b^2 - 4ac$$

$$= (-2k)^2 - 4 \times k \times 6 = 4k^2 - 24k$$

For equal roots,

$$4k^2 - 24k = 0 \implies k(4k - 24) = 0$$

D = 0

$$\Rightarrow$$
 $k = 0$ (not possible) or $4k - 24 = 0$

$$\Rightarrow$$
 4k = 24

$$\Rightarrow \qquad \qquad k = \frac{24}{4} = 6 \qquad k = 6 \quad Answer$$